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Irreversible Thermodynamics of Polydisperse Fluids t 

J. M. Kincaid, 2 M. Lbpez de Haro, 3 and E. G. D. Cohen 4 

The entropy production, conservation laws, and linear constituative equations 
that describe the irreversible behavior of polydisperse fluids near equilibrium are 
presented. The problems of computing transport coefficients and solving the 
hydrodynamic equations are discussed. 
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1. I N T R O D U C T I O N  

In this paper  we present a brief, formal description of polydisperse fluids 
that are not far removed from equilibrium. Our derivation of this descrip- 
tion closely parallels the methods described by de Groot  and Mazur [ 1 ] in 
their treatment of the irreversible thermodynamics of mult icomponent 
mixtures, and we assume that the reader is familiar with that work. Our 
objective is to create a general framework within which a hydrodynamic 
description of mixtures (polydisperse and multicomponent)  may be cast. 
We think that this will ultimately prove to be as useful as the polydisperse 
formulation of the equilibrium properties of fluids. That  is, we expect that 
the formulation of the irreversible thermodynamics of polydisperse fluids 
will stimulate the development of new techniques for solving the 
hydrodynamic equations for fluids in the same way that the polydisperse 
description of equilibrium properties has stimulated the development of 
new methods for determining the equilibrium properties of fluids [2-5] .  
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In Section 2 we derive an expression for the entropy production 
and formulate the conservation laws and linear constituative equations. 
In Section 3 we discuss how several solution techniques, developed for 
equilibrium polydisperse fluids, may be applied to hydrodynamic problems. 

2. IRREVERSIBLE T H E R M O D Y N A M I C S  

The composition of a mixture may be described by a mole-fraction 
distribution function, D. We assume, for simplicity, that the identity of the 
molecular species present in the system can be represented by the scalar 
variable I that assumes values in the interval (0, ~ ) .  D(I) is defined to be 
the fraction of molecular species with identities less than L Thus if there are 
N molecules in the system, ND(I) of those molecules have an identity label 
that is less than I. Clearly D(I) is a nondecreasing function of I that may 
assume values in the interval [-0, 1 ]. If the system is a mixture of several 
species D(I) will consist of a sum of step functions, and one often refers to 
such systems as being discrete or mutticomponent. If D is a continuous 
function of I, implying that there exists a continuum of species, the system 
is called polydisperse. When D(I) is continuous and increasing in intervals 
separated by one or more discontinuities, the system may be thought of as 
a mixture of discrete and polydisperse species; there is no generally 
recognized name for such systems. 

Although the distinction between discrete mixtures and polydisperse 
mixtures is often made, there is no compelling mathematical reason for it 
[2, 3]. In fact, there is good reason for dropping such distinctions because 
the macroscopic properties of the system may be expressed in a form that 
applies equally well to either case. Since D(I) has the same properties as a 
probability distribution function, the mathematical framework used to treat 
both discrete and continuous distributions may be used here. Some of the 
advantages of using this general description for equilibrium properties are 
discussed in Ref. 3. The purpose of this paper is to provide the same general 
description for the hydrodynamic properties. 

The mole fraction of species with identities in the interval (11, 12) is 
given by D(I2)-D(I1), and it is convenient to introduce a mole-fraction 
distribution density function, F(I), defined by 

F( I) = dD( I)/ dI 
so that 

and 

D( I )=  dI'F(I') 

1 = dI'F(I') 

(1) 

(2) 

(3) 
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For a system with N particles and a total mass M, N(I) = NF(I) is then the 
number distribution density, M ( I ) = m ( I ) N ( I )  is the mass distribution 
density, and c(I) = M ( I ) / M  is the mass-fraction distribution density, where 
m(I) is the mass of a molecule of species/. 

The internal energy, U, of an equilibrium system is an extensive 
(homogeneous of order 1) function of the state variables S and V and 
functional of M(I)- - that  is, U depends on integrals of the function M(I). 
The combined first and second laws for the system, expressed in terms of 
specific quantities, u = U/M, s = S/M, v = V/M, and c(I), is 

+ pdv - f dI#*(I) 6c(I) (4) Tds du 

where 

T = ( ~ U / ~ S ) v , M ( 1 ) ,  p = - ( ( ~ U / O V ) s , M ( , ) ,  and #*(I) = [6U/6M(I)]s,  v 

(5) 

Here T is the temperature, p is the pressure, and #*(I) is the chemical 
potential distribution density. {We have included a superscript asterisk in 
our symbol for the chemical potential to emphasize its difference from 
#(I) = [6U/6N(I)]s, v that we use in kinetic theory calculations [6].} 

The description of the irreversible properties of the system is obtained 
from Eq. (4) by assuming that there exists within small mass elements a 
state of local equilibrium such that Eq. (4) remains valid for those mass 
elements followed along their center of mass motion, i.e., 

where 

d _fdi,.<i)d,I) 
dt dt + p -~ dt 

(6) 

d/dt= O / & + u - V  (7) 

u=~ die(I) v(I) (8) 

and v(I) is the velocity of species/. Note that since we are describing states 
out of equilibrium, the local thermodynamic variables will change with 
time, t, and location, r. To avoid notational clutter we have chosen not to 
indicate explicitly the dependence of the variables on t and r. 

We now express the right-hand side of Eq. (6) as the divergence of an 
entropy flux plus an entropy production term. We begin by defining the 
mass flux of species I in the local center of mass (barycentric) frame 

J(K) = pe(K)[v(K) - u] (9) 
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where p = M/V= 1/v. The mass conservation (balance) equations are then 

pdc(K)/dt = - V  . J(K) (10) 

and 

pdv/dt = V . u (11 ) 

These equations allow us to eliminate the derivatives dc(K)/dt and dv/dt in 
Eq. (6). The equation of motion for the system (momentum balance) is 

pdu/dt = - V .  po) _ Vp + p f dKc(K) Fro(K) (12) 

where Fro(K) is the external force per unit mass exerted on molecules of 
species K (we assume that Fro(K) is independent of the time); p(1) is 
defined by 

P = p I + P  (1) (13) 

where I is the unit tensor and P is the pressure tensor. The energy balance 
equation is used to define a heat flux Jq: 

pdu/dt= - V ' J q - p V ' u - p ( 1 ) : V u +  f dKJ(K)'Fm(K) (14) 

Note that the u on the left-hand side of this equation is the specific internal 
energy and should not be confused with the local fluid velocity u. 

If we now substitute the expressions for du/dt, dv/dt, and dc(K)/dt 
given by the balance equations into Eq. (6) and make use of Eq. (12) for 
du/dt we obtain 

pds/dt = - V  "Js + ~ (15) 

where the entropy flux, Js, is defined by 

J s = l [ J o - f  dK#*(K)J(K)l (16) 

and the entropy production, a, is defined by 

1 f 1 p(1): VU ! j . V In T----~ dKJ(K). { TV[#*(K)/T] - Fm(K)} - - ~  
a = - -  T q 

(17) 
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In order to separate variables according to their different tensorial charac- 
ters, it is necessary to decompose the tensors p(1) and Vu into sums of 
diagonal and traceless tensors: 

~(1) ---- rcI + IZl (18) 

and 
Vu = I(V. u)I + (g?u) (19) 

then the term (1/T)p(1): Vu that appears in Eq. (17) may be written as 

1 o 
1 p(l): Vu ~ V u - - -  II~ (Vu) (20) 
T T T 

and the entropy production takes the form of a sum of scalar products 

_re V 1 j  . V l n T - - T  dKJ(K) 
a =  T 'U T q 

�9 { T V  E~e~(K) /T3  - Fro(K) } - 1 fi:  (Vu) (21) 

That is, a is a sum of scalar products of fluxes [~, Jq, J(K), and 1~1] and 
forces ( -  (1/T)V. u, - (1/T)V In T, - (I/T){ TV[It*(K)/T] - Fm(K)}, and 
- (1/T)(Vu)). 

The description of the nonequilibrium state is completed by assuming 
that the fluxes are linearly related to the forces. Thus we set 

Luu V 7r= .u (22) 
T 

L' L'q(/Q 
aq - -qq V In r -  f d K  { T V [ ~ * ( x ) / r ]  - Fm(K)} (23) 

T T 

a(I) = Lq'(I) . . . .  [ K" 
V Vln T - f d X  L ( T ) {TV[ la* (K) /TJ -Fm(K)}  (24) 

L (Vu) (25) fI=-? 
The set of phenomological coefficients Luu, L'qq, L'q(K), Lq'(K), L"(I, K), 
and L must be such that a~>0. And the generalization of the Onsager 
reciprocity theorem leads us to the reciprocal relations 

L'q(K) = Lq'(K) (26) 

L"(I, K) = L"(K, I) (27) 
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The functions L'q(K) and L"(I, K) are related to the polydisperse 
analogue of the thermal diffusion and mutual diffusion coefficients, respec- 
tively; L'qq is related to the thermal conductivity; and Luu and L are related 
to the bulk and shear viscosity, respectively. 

3. DISCUSSION 

In this section we discuss some of the difficulties involved in trying to 
extract useful information from the polydisperse generalization of irrever- 
sible thermodynamics and make some observations on how the use of the 
new techniques developed to solve equilibrium problems may be employed 
to solve polydisperse transport problems. 

Section 2 is a rather straightforward generalization of the usual 
development of irreversible thermodynamics. Because it is a purely formal 
development, it does not really bring us to a description of nonequilibrium 
states that is, from a practical point of view, much superior to the discrete 
mixture formulation. In fact one could argue that this description is more 
complicated in the sense that we have replaced sums over discrete indices 
by integrals. However, the slightly more complicated and mathematically 
more sophisticated representation we have described can stimulate the 
development of new solution methods and/or more efficient solution 
methods. 

3.1. The Transport Coefficients 

Since there is relatively little experimental information about the trans- 
port coefficients of binary mixtures, it is unlikely that there will be many 
experimental data for the transport coefficients of mixtures with more than 
two components in the foreseeable future. At present the only analytical 
means for predicting how a transport coefficient depends on T, p, and F(I) 
is through the use of kinetic theory. Xu and Stell [7] have addressed this 
problem recently. They have calculated (in the first Enskog approximation) 
the shear viscosity of a polydisperse system of hard spheres of equal mass 
and a distribution of diameters a(I) using both the Boltzmann and the 
Enskog kinetic equations. The only tractable method for obtaining an 
analytic expression for the transport coefficients, that we know of now, for 
more general types of mixtures (in particular, ones for which different 
species have different masses) is to use the type of perturbation expansion 
described in Ref. 2, namely an expansion about a one-component fluid: 
re(I) = m o + ram(l) and ~b(r, I, J) = ~bo(r) + ~bl(r, I, J), treating rnl(I ) and 
~bi(r, I, J) as small quantities. [Here mo and ~bo(r ) are the mass and inter- 
molecular potential of some species Io. ] A special case of this method--and 
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somewhat easier to implement--is realized when F(I) has some parameter, 
e, which in the limit e ~ 0, F(I) ~ 3 ( 1 -  Io). Then one expands in powers of 
e. (See Refs. 2, 3, and 8.) This is the nearly monodisperse fluid. An alter- 
native numerical procedure based on the quadrature method of Cotterman 
and Prausnitz [4] is also possible. The quadrature method essentially 
chooses a small, optimum set of pseudocomponents with which to 
represent the complete mixture. The pseudocomponents are chosen such 
that integrals over F(I) are well represented by summations over the 
pseudocomponents. 

At the end of Section 2 we mentioned that the phenomological coef- 
ficients were related to the transport coefficients. We did not give specific 
relationships because there is a rather wide variation of the definitions of 
diffusion, thermal diffusion, and thermal conductivity coefficients. 
However, the definition of the shear viscosity, r/, and the bulk viscosity, to, 
by 

P = pI  - 2q(Vu) - ~c(V. u)I (28) 

is widely accepted, and thus 

q = L/(2T)  and • = Lu~/T (29) 

In light of Xu and Stell's work [-7], it would be useful to recast Eqs. 
(21)-(26) into a form that is more directly related to the variables used in 
kinetic theory, that is, transform Eqs. (23) and (24) into a form more 
directly related to that which arises naturally when one solves the 
Boltzmann or Enskog kinetic equations. To this end, we introduce a new 
heat flux, 

Jq = Jq - f dKH(K)  J(K) (30) 

where 

H(K)  = #*(K) - T oI~*'K't ~ (31) 
~T 

the "thermal force," 

and a new "mass force," 

1 
Xq= - - ~ V  In T (32) 

1 
X(K)= - ~  [VT#*(K) -Fm(K) ]  (33) 
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Here Vr is the gradient operator at a constant temperature. Since 

1 
T { TV [p*(K)/T] - Fro(K) } = X(K) - H(K)Xq (34) 

the entropy production is given by 

- -  ~ V "U -~- J ; .  X q  ~- f dKJ(K). X(K) - 1 l ~ I "  (liTu) 
a= T T " 

(35) 

In terms of these new variables the linear relations, Eqs. (23) and (24), 
become 

t �9 

Jq = LqqXq + j dKLq(K) X(K) (36) 

and 

--  ~tt J(I) - Lq Xq "~ f dKL"(I, K) X(K) (37) 

with L'q(K) = Lq'(K) and L"(I, K) = L"(K, I). 
With this description, the phenomological transport coefficients 

defined in Ref. 6 (after taking the polydisperse limit [7]) may be directly 
- '  Lq(K), related to Lq(K), and L"(L K). In this manner the transport coef- 

ficients may be obtained at either the Boltzmann or the Enskog level. 

3.2. Solving the Hydrodynamic Equations 

3.2.1. Simple Problems 

In cases where mutual diffusion and thermal diffusion can be ignored, 
F(I) is spatially uniform, and the fluid is incompressible, the standard 
techniques of fluid mechanics and heat transfer can be used to solve for the 
velocity field, u(r, t), and the temperature field, T(r, t), given the initial and 
boundary conditions. 

3.2.2. Difficult Problems 
Still with the assumptions of incompressible flow and that mutual and 

thermal diffusion can be ignored, when F(I) is not spatially uniform the 
phenomological coefficients L and L'qq (i.e., the shear viscosity and thermal 
conductivity) will depend on r not only through the spatial dependence of 
T, which can often be ignored, but also through the spatial dependence of 
F(I). If the system is composed of molecules having a broad range of 
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masses, we expect that L and L'qq may vary significantly with position. 
Although there is a variety of numerical techniques for solving the 
hydrodynamic equations when the transport coefficients are not constant, 
a useful technique may be to expand F(I) about a reference point. For 
example, consider the problem of finding the radial variation o fu  in steady 
isothermal, laminar flow in a pipe with stick boundary conditions and sym- 
metry about the center of the pipe (z = 0). Let us assume that the flow is in 
the x direction and that l~lx~ is a linear function of z. If F(I, r) is uniform 
throughout the fluid, the shear viscosity, 7, will not depend on r and one 
obtains a parabolic velocity profile: Uz = -�89 where R is the 
radius of the pipe and A is proportional to lift. If the spatial variation of 
F(I, r) is symmetric about the center of the pipe ( z = 0 )  and a weak 
function of z, we may approximate F(I, r) by Fo(I)+Fl(I )z+. . .  and 
will have the form r/= t/o + ~/lZ + ..-. In this case one finds 

[ "t- A0/~I (Z 3 --  R 3) + . . .  
u z = _ ~ A o ( Z 2  - -  R 2 )  3t/0 (38) 

3.2.3. Very Difficult Problems 

When the composition of the system is not uniform and when that 
nonuniformity depends on the boundary conditions, the hydrodynamic 
equations are very difficult to solve. Many technologically important 
problems fall into this category: condensation on a cold wall, flame 
propagation, and two-phase flow. An especially intriguing problem is to 
determine which properties of a mixture have a qualitative effect on the 
hydrodynamic stability of a system. For instance, Kolodner et al. [9] have 
recently suggested that thermal diffusion may have a marked effect on the 
Rayleight-Benard instability. We cannot suggest, at this time, any new 
analytical approaches for solving such problems. However, based on our 
experience with equilibrium polydisperse fluids, we are optimistic that by 
considering such problems within the general context of the polydisperse 
formulaltion of the hydrodynamic equations, it will be possible to find new 
solution methods. 
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